Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
AJR Am J Roentgenol ; 217(5): 1093-1102, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1484970

ABSTRACT

BACKGROUND. Previous studies compared CT findings of COVID-19 pneumonia with those of other infections; however, to our knowledge, no studies to date have included noninfectious organizing pneumonia (OP) for comparison. OBJECTIVE. The objectives of this study were to compare chest CT features of COVID-19, influenza, and OP using a multireader design and to assess the performance of radiologists in distinguishing between these conditions. METHODS. This retrospective study included 150 chest CT examinations in 150 patients (mean [± SD] age, 58 ± 16 years) with a diagnosis of COVID-19, influenza, or non-infectious OP (50 randomly selected abnormal CT examinations per diagnosis). Six thoracic radiologists independently assessed CT examinations for 14 individual CT findings and for Radiological Society of North America (RSNA) COVID-19 category and recorded a favored diagnosis. The CT characteristics of the three diagnoses were compared using random-effects models; the diagnostic performance of the readers was assessed. RESULTS. COVID-19 pneumonia was significantly different (p < .05) from influenza pneumonia for seven of 14 chest CT findings, although it was different (p < .05) from OP for four of 14 findings (central or diffuse distribution was seen in 10% and 7% of COVID-19 cases, respectively, vs 20% and 21% of OP cases, respectively; unilateral distribution was seen in 1% of COVID-19 cases vs 7% of OP cases; non-tree-in-bud nodules was seen in 32% of COVID-19 cases vs 53% of OP cases; tree-in-bud nodules were seen in 6% of COVID-19 cases vs 14% of OP cases). A total of 70% of cases of COVID-19, 33% of influenza cases, and 47% of OP cases had typical findings according to RSNA COVID-19 category assessment (p < .001). The mean percentage of correct favored diagnoses compared with actual diagnoses was 44% for COVID-19, 29% for influenza, and 39% for OP. The mean diagnostic accuracy of favored diagnoses was 70% for COVID-19 pneumonia and 68% for both influenza and OP. CONCLUSION. CT findings of COVID-19 substantially overlap with those of influenza and, to a greater extent, those of OP. The diagnostic accuracy of the radiologists was low in a study sample that contained equal proportions of these three types of pneumonia. CLINICAL IMPACT. Recognized challenges in diagnosing COVID-19 by CT are furthered by the strong overlap observed between the appearances of COVID-19 and OP on CT. This challenge may be particularly evident in clinical settings in which there are substantial proportions of patients with potential causes of OP such as ongoing cancer therapy or autoimmune conditions.


Subject(s)
COVID-19/diagnostic imaging , Cryptogenic Organizing Pneumonia/diagnostic imaging , Influenza, Human/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed , Diagnosis, Differential , Female , Humans , Influenza, Human/virology , Male , Massachusetts , Middle Aged , Observer Variation , Pneumonia, Viral/virology , Radiography, Thoracic , Retrospective Studies , SARS-CoV-2
3.
PLoS One ; 15(9): e0239519, 2020.
Article in English | MEDLINE | ID: covidwho-792303

ABSTRACT

The new coronavirus disease 2019 (COVID-19) pandemic has challenged many healthcare systems around the world. While most of the current understanding of the clinical features of COVID-19 is derived from Chinese studies, there is a relative paucity of reports from the remaining global health community. In this study, we analyze the clinical and radiologic factors that correlate with mortality odds in COVID-19 positive patients from a tertiary care center in Tehran, Iran. A retrospective cohort study of 90 patients with reverse transcriptase-polymerase chain reaction (RT-PCR) positive COVID-19 infection was conducted, analyzing demographics, co-morbidities, presenting symptoms, vital signs, laboratory values, chest radiograph findings, and chest CT features based on mortality. Chest radiograph was assessed using the Radiographic Assessment of Lung Edema (RALE) scoring system. Chest CTs were assessed according to the opacification pattern, distribution, and standardized severity score. Initial and follow-up Chest CTs were compared if available. Multiple logistic regression was used to generate a prediction model for mortality. The 90 patients included 59 men and 31 women (59.4 ± 16.6 years), including 21 deceased and 69 surviving patients. Among clinical features, advanced age (p = 0.02), low oxygenation saturation (p<0.001), leukocytosis (p = 0.02), low lymphocyte fraction (p = 0.03), and low platelet count (p = 0.048) were associated with increased mortality. High RALE score on initial chest radiograph (p = 0.002), presence of pleural effusions on initial CT chest (p = 0.005), development of pleural effusions on follow-up CT chest (p = 0.04), and worsening lung severity score on follow-up CT Chest (p = 0.03) were associated with mortality. A two-factor logistic model using patient age and oxygen saturation was created, which demonstrates 89% accuracy and area under the ROC curve of 0.86 (p<0.0001). Specific demographic, clinical, and imaging features are associated with increased mortality in COVID-19 infections. Attention to these features can help optimize patient management.


Subject(s)
Coronavirus Infections/diagnostic imaging , Coronavirus Infections/mortality , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/mortality , Adult , Aged , Betacoronavirus , COVID-19 , Comorbidity , Female , Humans , Image Processing, Computer-Assisted , Iran , Logistic Models , Male , Middle Aged , Pandemics , Radiography, Thoracic , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Tertiary Care Centers , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL